857 research outputs found

    Method for repair of thin glass coatings

    Get PDF
    A method of repairing cracks or damaged areas in glass, in particular, glass coatings provided on tile. The method includes removing the damaged area using a high speed diamond burr drilling out a cavity that extends slightly into the base material of the tile. All loose material is then cleaned from the drilled out cavity and the cavity is filled adjacent the upper surface of the coating with a filler material including chopped silica fibers mixed with a binder. The filler material is packed into the cavity and a repair coating is applied by means of a brush or sprayed thereover. The repair includes borosilicate suspended in solution. Heat is applied at approximately 2100 F. for approximately five minutes for curing the coating, causing boron silicide particles of the coating to oxidize forming a very fluid boron-oxide rich glass which reacts with the other frits to form an impervious, highly refractory layer

    Ab initio synthesis of the ozone ultraviolet continuum

    Full text link
    Potential energy surfaces for the ground and excited electronic states responsible for the Hartley continuum of ozone are used to obtain quadratic, cubic, and quartic force constants. Vibrational dependence of rotational constants to sixth order is calculated by perturbation theory. The spectroscopic constants enable computation of rovibronic energy levels. Overlap of ground state and excited state perturbed vibrational wave functions yield Franck–Condon factors. Electric dipole allowed rovibronic transitions are generated under the Ir representation. The entire set of results generate the ultraviolet absorption spectrum. It is shown that inclusion of anharmonic terms in the vibrational Hamiltonian has a small effect upon the final spectrum, whereas rotational broadening plays a greater role in achieving agreement with experiment.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69598/2/JCPSA6-86-10-5329-1.pd

    Molecular Alterations in Pediatric Sarcomas: Potential Targets for Immunotherapy

    Get PDF
    Purpose/results/discussion. Recurrent chromosomal translocations are common features of many human malignancies. While such translocations often serve as diagnostic markers, molecular analysis of these breakpoint regions and the characterization of the affected genes is leading to a greater understanding of the causal role such translocations play in malignant transformation. A common theme that is emerging from the study of tumor-associated translocations is the generation of chimeric genes that, when expressed, frequently retain many of the functional properties of the wild-type genes from which they originated. Sarcomas, in particular, harbor chimeric genes that are often derived from transcription factors, suggesting that the resulting chimeric transcription factors contribute to tumorigenesis. The tumor-specific expression of the fusion proteins make them likely candidates for tumor-associated antigens (TAA) and are thus of interest in the development of new therapies. The focus of this review will be on the translocation events associated with Ewing's sarcomas/PNETs (ES), alveolar rhabdomyosarcoma (ARMS), malignant melanoma of soft parts (MMSP) (clear cell sarcoma), desmoplastic small round cell tumor (DSRCT), synovial sarcoma (SS), and liposarcoma (LS), and the potential for targeting the resulting chimeric proteins in novel immunotherapies

    Autocrine Transforming Growth Factor-β Growth Pathway in Murine Osteosarcoma Cell Lines Associated with Inability to Affect Phosphorylation of Retinoblastoma Protein

    Get PDF
    Purpose. Production of active transforming growth factor-β (TGF-β ) by human osteosarcoma may contribute to malignant progression through mechanisms that include induction of angiogenesis, immune suppression and autocrine growth stimulation of tumor cell growth.To study events associated with induction of cell proliferation by TGF-β , we have evaluated the TGF-β pathway in two murine osteosarcoma cell lines, K7 and K12

    Molecular cloning and primary structure of human glial fibrillary acidic protein.

    Full text link

    High Adenylyl Cyclase Activity and \u3cem\u3eIn Vivo\u3c/em\u3e cAMP Fluctuations in Corals Suggest Central Physiological Role

    Get PDF
    Corals are an ecologically and evolutionarily significant group, providing the framework for coral reef biodiversity while representing one of the most basal of metazoan phyla. However, little is known about fundamental signaling pathways in corals. Here we investigate the dynamics of cAMP, a conserved signaling molecule that can regulate virtually every physiological process. Bioinformatics revealed corals have both transmembrane and soluble adenylyl cyclases (AC). Endogenous cAMP levels in live corals followed a potential diel cycle, as they were higher during the day compared to the middle of the night. Coral homogenates exhibited some of the highest cAMP production rates ever to be recorded in any organism; this activity was inhibited by calcium ions and stimulated by bicarbonate. In contrast, zooxanthellae or mucus had \u3e1000-fold lower AC activity. These results suggest that cAMP is an important regulator of coral physiology, especially in response to light, acid/base disturbances and inorganic carbon levels

    Indirect exchange in GaMnAs bilayers via spin-polarized inhomogeneous hole gas: Monte Carlo simulation

    Full text link
    The magnetic order resulting from an indirect exchange between magnetic moments provided by spin-polarized hole gas in the metallic phase of a GaMnAs double layer structure is studied via Monte Carlo simulation. The coupling mechanism involves a perturbative calculation in second order of the interaction between the magnetic moments and carriers (holes). We take into account a possible polarization of the hole gas due to the existence of an average magnetization in the magnetic layers, establishing, in this way, a self-consistency between the magnetic order and the electronic structure. That interaction leads to an internal ferromagnetic order inside each layer, and a parallel arrangement between their magnetizations, even in the case of thin layers. This fact is analyzed in terms of the inter- and intra-layer interactions.Comment: 17 pages and 14 figure

    Nonequilibrium spin distribution in single-electron transistor

    Full text link
    Single-electron transistor with ferromagnetic outer electrodes and nonmagnetic island is studied theoretically. Nonequilibrium electron spin distribution in the island is caused by tunneling current. The dependencies of the magnetoresistance ratio δ\delta on the bias and gate voltages show the dips which are directly related to the induced separation of Fermi levels for electrons with different spins. Inside a dip δ\delta can become negative.Comment: 11 pages, 2 eps figure

    Thermal effects on atomic friction

    Full text link
    We model friction acting on the tip of an atomic force microscope as it is dragged across a surface at non-zero temperatures. We find that stick-slip motion occurs and that the average frictional force follows lnv2/3|\ln v|^{2/3}, where vv is the tip velocity. This compares well to recent experimental work (Gnecco et al, PRL 84, 1172), permitting the quantitative extraction of all microscopic parameters. We calculate the scaled form of the average frictional force's dependence on both temperature and tip speed as well as the form of the friction-force distribution function.Comment: Accepted for publication, Physical Review Letter
    corecore